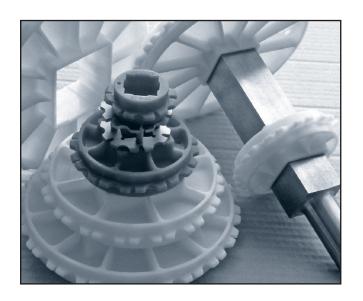
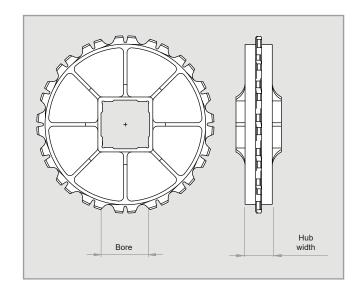

SERIES E30 OPEN GRID

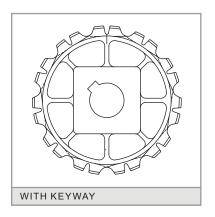
Eurobelt Series E30 Open Grid conveyor belt is used in product-in-bulk processes in inclined planes whenever the use of conventional flights is not possible.

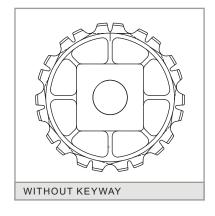
Their mini-flights reduce the contact surface between product and belt, decreasing the adherence in processes like fish glazing and conveyance of frozen fish.

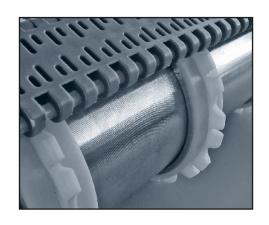

Pitch	30 mm
Surface	Open Grid
Open area	41 %
Maximum opening (approx.)	[8 X 7.7] mm
Thickness	9 mm
Mini-flight height	5 mm
Drive system	Central
Belt width	Multiples of 10 mm
Rod diameter	Ø 4.6 mm
Retention system	Сар


Material of the belt	Material of the rod	Belt strength (kg/m)	Temperature range (°C)	Belt weight (kg/m²)	Available colours in stock
PP - Polypropylene	PP - Polypropylene	1,100	+1 to +104	3.93	[W]
PE - Polyethylene	PE - Polyethylene	600	-50 to +65	4.24	[N]
A.C. Polyopotol	PP - Polypropylene	2,250	+1 to +90	5.88	[B]
AC - Polyacetal	PE - Polyethylene	1,920	-40 to +65	5.91	[B]

Colours: [W] White - [G] Grey - [B] Blue - [N] Natural - [O] Black. // The materials and colours that are normally in stock are those above indicated. In special cases in which it is needed a belt in a material or colour different from those above mentioned, you should ask directly to EUROBELT.


ACCESSORIES [SPROCKETS]





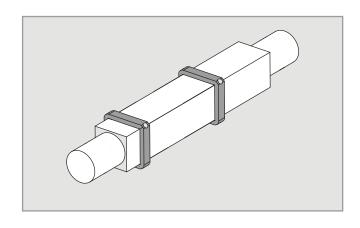
N° of teeth	Pitch	Bore for square shaft Hub		Hub	Materials	
Т	diameter	mm	inch	width	waterials	
6	60	25	-	24		
9	87.7	25 40	1" 1.5"	24		
11	106.5	40	1.5"	40	Polypropylene	
14	134,8	40	1,5"	40	Polyacetal	
16	153.5	40 60	1.5" 2.5"	40	Stainless steel	
20	191.5	40 60 90	1.5"	40		

SPROCKETS FOR SQUARE SHAFT

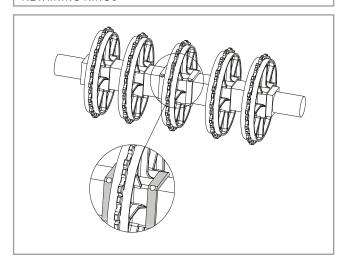
We have plastic sprockets for round shaft with and without keyway. We also have sprockets to be used with motor drum in applications needing a special cleaning or in conveyors in which it is not possible to place the motor in the outside due to problems of space or safety.

ACCESSORIES [RETAINING RINGS]

INSTALLATION


These rings are placed at every side of the central sprocket to fasten it to the shaft in order to avoid any lateral movements of the belt.

They are manufactured in AISI 316 stainless steel and they are fixed by means of a set screw stuffed in the ring itself.


One sprocket, duly fixed with 2 retaining rings, should be put in the centre. Then you should place the same quantity of sprockets at every side of the central one but without any fixing, as they will absorb the possible belt expansions and contractions.

The same procedure should be carried out in both shafts.

Bore for square shaft	Screws
20	M 5 x 5
40	M 6 x 6
60	M 6 x 6
90	M 6 x 6

RETAINING RINGS

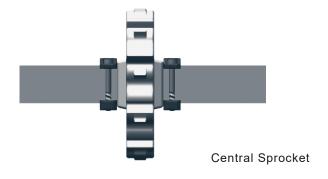
CENTRAL SPROCKET

ACCESSORIES [FASTENING RING CLU]

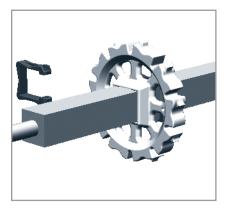
The CLU Eurobelt retainer rings guarantee the fastening of the Central Sprocket on both drive and idle shafts.

High-resistance ACETAL.

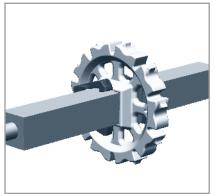
Working temperature: +60°C / -40°C

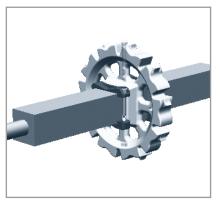

Pour arbre carré de 40 mm ó 1 1/2"

The belt can expand or contract due to the temperature.


The drive system of modular belts requires the central sprocket not to move axially both in the drive and the idle shafts.

The rest of sprockets can slide freely on the shaft adapting to the possible changes of the belt, so that the correct position of the teeth is guaranteed.



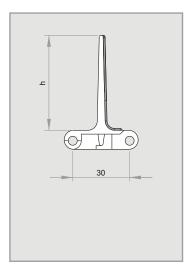

QUICK AND EASY INSTALLATION

1.Direct installation without dismantling the shaft.

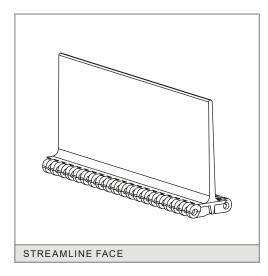
opening the ring.

2. Easy placing on the shaft by 3. Reliable closing of the ring by means of a screw and nut at a low cost.

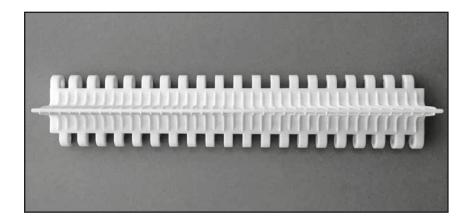
ACCESSORIES [FLIGHTS AND SIDE GUARDS]

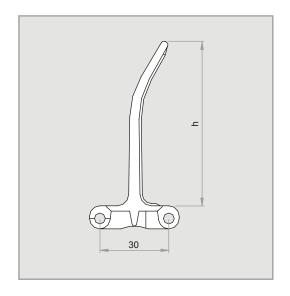

The **flights** are plastic accessories to be inserted across the belt. They are used to push the product in ascent, descent or accompaniment applications, avoiding that it slips along the belt.

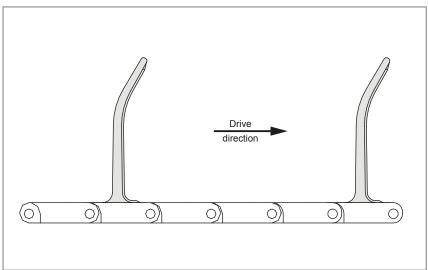

Its non-stick side has ribs that project over the surface to prevent the product from sticking.


The **side guards** are plastic accessories to be inserted into the belt structure to retain the product laterally, avoiding overflows and frictions with the conveyor structure itself.

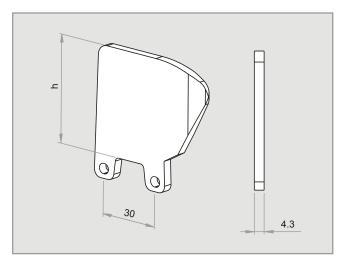
It is possible to cut down the standard height for special applications.

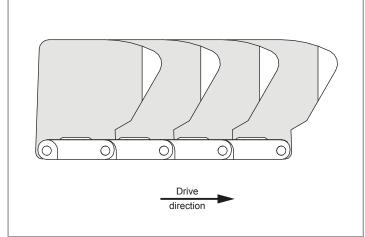

STRAIGHT FLIGHT [STREAMLINE + NO CLING]


STRAIGHT FLIGHT [NO CLING]



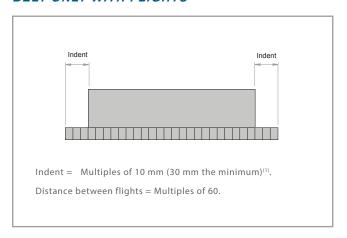
Height (h)	Materials		
Straight flight [Stream	Straight flight [Streamline + No Cling]		
25 50 75	Polypropylene Polyethylene Polyacetal		
Straight flight [No Cling]			
25 50	Polypropylene Polyethylene		


BENT FLIGHT

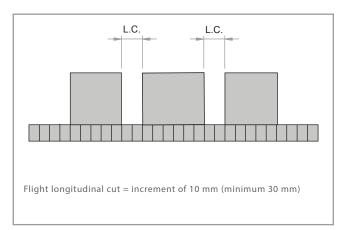


Accessories	Height (h)	Materials
Bent Flight [Streamline + No Cling]	45 70	Polypropylene Polyethylene Polyacetal

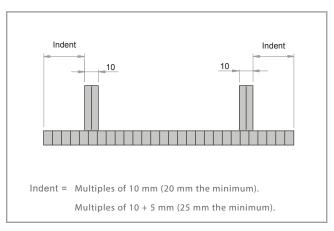
SIDE GUARDS

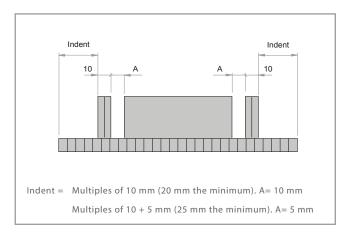


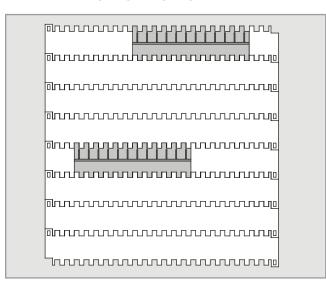
Accessories	Height (h)	Materials
Side guards	50 75	Polypropylene Polyethylene Polyacetal

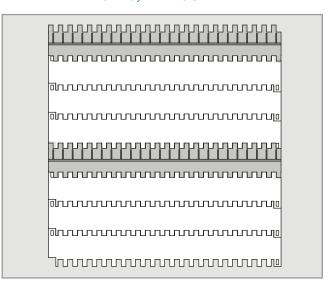


TECHNICAL DATA [FLIGHTS AND SIDE GUARDS]

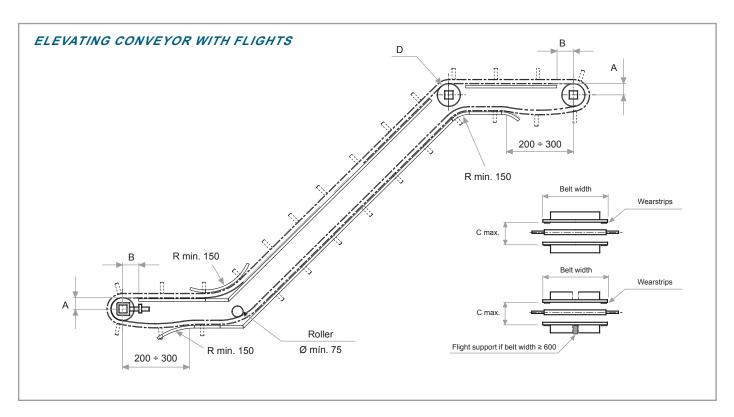

BELT ONLY WITH FLIGHTS

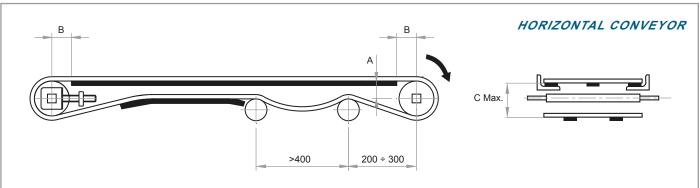

BELT WITH LONGITUDINAL CUTS


BELT ONLY WITH SIDE GUARDS


BELT WITH FLIGHTS AND SIDE GUARDS

BELT WITH ZIGZAG FLIGHTS


BELT WITH FLIGHTS, WITHOUT INDENT



⁽¹⁾ Ask for the possibility of shaping your belt with a smaller indent than that recommended.

CONSTRUCTION DATA [CONVEYOR]

- [A] Distance between the sliding surface of the belt and the centre of the shaft.
- **[B]** Distance between the vertical of the shaft and the beginning of the sliding surface.
- **[C]** Distance between the sliding surface of the belt and the support of the return way.
- **[D]** If sprockets are used in the inflexion shaft, do not retain the central one.
- [R] This radius must be as big as allowed by the application in order to minimize the wear (min. 150 mm). For belts with side guards, consult about this radius.

In the construction of conveyors, the distances appearing in the chart below must be respected according to the belt Series and the size of the sprockets.

N° of teeth T	Ø Pitch	А	B max.	C max.
6	60	25	30	65
9	87.7	37	40	92
11	106.5	48	50	110
14	134,8	62	43	135
16	153.5	73	65	155
20	191.5	91	75	195

TABLE OF SPROCKETS AND WEARSTRIPS

Belt nominal width (mm)		Minimum quantity	Minimum quantity of wearstrips	
wiath	(mm)	of sprockets per shaft	Transport way	Return way
40	100	1	2	2
110	300	3	2	2
310	500	5	4	3
510	700	7	6	4
710	900	9	8	5
910	1,100	11	10	6
1,110	1,300	13	12	7
1,310	1,500	15	14	8
1,510	1,700	17	16	9
1,710	1,900	19	18	11
1,910	2,100	21	20	12
2,110	2,300	23	22	13
2,310	2,500	25	24	14
2,510	2,700	27	26	15
2,710	2,900	29	28	16
2,910	3,100	31	30	17
3,110	3,300	33	32	18
3,310	3,500	35	34	19
3,510	3,700	37	36	21

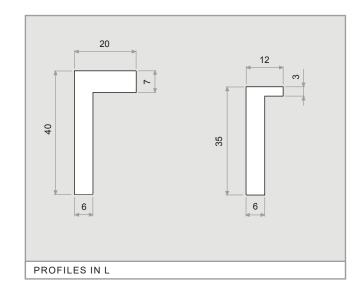
To calculate the necessary minimum quantity of sprockets for the drive shaft as well as for the idle one, the next formula has been used:

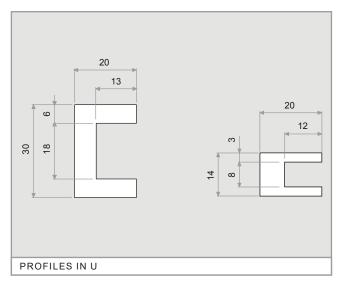
This amount must always be odd.

To calculate the quantity of supports, the weight of the product to be transported must be taken into account.

The distance between supports should not exceed 150 mm in the transport way or 300 mm in the return way.

ACCESSORIES [HOLD-DOWN PROFILES]




To make the fastening and the support of the belt, EUROBELT has designed two types of hold-down profiles with different geometries, but with the same uses and services.

These profiles, with a low coefficient of friction, are placed between the belt and the structure of the conveyor, reducing the wear of the surfaces in contact, which contributes to prolong the life of the belt.

EUROBELT offers all the hold-down profiles in special polyethylenes with very good sliding properties and an excellent resistance to impact.


Accessories	Dimensions	Materials	
Profiles in I	40 x 20 x 2.000		
Profiles in L	35 x 12 x 2.000	Dolyothylono	
Drafiles in II	20 x 30 x 2.000	Polyethylene	
Profiles in U	20 x 14 x 2.000		

ACCESSORIES [WEARSTRIPS]

The flat wearstrips are fastened by means of flatheaded plastic screws, which contributes to obtain a smooth surface free of any possibility of hooking.

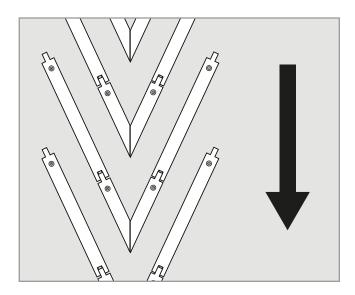
The dimensions of those screws are: M 6 x 25 mm.

Due to their dovetail design, they can adapt to possible longitudinal contractions and expansions of the belt.

Dimensions	Materials	
6 x 32 x 500	Polyethylene Conductive polyethylene Polyacetal	

The wearstrips arrangement is an important factor in the life span of a conveyor belt. It should be chosen the most suitable configuration according to the transport needs. To calculate the quantity of supports, the weight of the product to be conveyed should be taken into account.

PARALLEL RUNNERS


It consists of placing the wearstrips in a parallel and continuous way along the conveyor structure.

It is preferable to position them so that the joints do not coincide.

This is probably the simplest and most economical configuration although, depending on the load to be transported, uneven wears can arise on the back surface of the belt.

It is not advisable for applications with a very heavy load.

CHEVRON ARRAY

The wearstrips are placed throughout the length and breadth of the conveyor, as shown in the picture above.

The possible wear that might occur will be even all over the belt, since it is resting on the wearstrips lengthwise and breadthwise.

With this angle-shaped layout the cleaning and the removal of wastes are easy.

It is advisable for applications bearing heavy loads or for high speeds.